Wednesday, February 9, 2022

Facial landmark‐guided surface matching for image‐to‐patient registration with an RGB‐D camera

xlomafota13 shared this article with you from Inoreader

Abstract

Background

Fiducial marker-based image-to-patient registration is the most common way in image-guided neurosurgery, which is labour-intensive, time consuming, invasive and error prone.

Methods

We proposed a method of facial landmark-guided surface matching for image-to-patient registration using an RGB-D camera. Five facial landmarks are localised from preoperative magnetic resonance (MR) images using deep learning and RGB image using Adaboost with multi-scale block local binary patterns, respectively. The registration of two facial surface point clouds derived from MR images and RGB-D data is initialised by aligning these five landmarks and further refined by weighted iterative closest point algorithm.

Results

Phantom experiment results show the target registration error is less than 3 mm when the distance from the camera to the phantom is less than 1000 mm. The registration takes less than 10 s.

Conclusions

The proposed method is comparable to the state-of-the-arts in terms of the accuracy yet more time-saving and non-invasive.

View on the web

No comments:

Post a Comment

Collaboration request

Hi there How would you like to earn a 35% commission for each sale for life by selling SEO services Every website owner requires the ...