Bull Cancer. 2021 Oct;108(10S):S168-S180. doi: 10.1016/j.bulcan.2021.02.016.
ABSTRACT
CAR-T cells originate from two different approaches, cellular immunotherapy based on tumor immunosurveillance by T lymphocytes, combined with molecular engineering of bispecific antibodies and antibody fragments. The latter makes it possible to retarget immune effector cytotoxic cells (such as NK cells and T lymphocytes) to tumor cells through the binding to tumor-associated antigens. We present herein the history of bispecific antibodies, highlighting how such antibodies played a major role in CAR-T cell development. We will first evoke how antibody engineering led to the construction of various bispecific formats, in particular using the single chain Fv fragment (scFv) which has been used as the initial building block to generate chimeric bi-, tri- or multifunctional molecules. We will also describe how bispecific antibodies, either full IgG or as s cFv or F(ab')2 format, directed against Fcγ receptors or CD3ɛ and against tumor-associated antigens, induce a potent anti-tumor cytotoxicity following the recruitment and activation of immune effector cells, including CD3+ T lymphocytes. These anti-tumor effects have been translated into the clinics, especially to treat malignant hemopathies. At last, recently generated bispecific CAR-T cells suggest that the embrace between cell therapy and bispecific antibodies is not over and that we are yet to witness further discoveries enabling these cells to be even more efficient.
PMID:34920800 | DOI:10.1016/j.bulcan.2021.02.016
No comments:
Post a Comment