Abstract
Age-related declines in auditory temporal processing contribute to speech understanding difficulties of older adults. These temporal processing deficits have been established primarily among acoustic-hearing listeners, but the peripheral and central contributions are difficult to separate. This study recorded cortical auditory evoked potentials from younger to middle-aged (< 65 years) and older (≥ 65 years) cochlear-implant (CI) listeners to assess age-related changes in temporal processing, where cochlear processing is bypassed in this population. Aging effects were compared to age-matched normal-hearing (NH) listeners. Advancing age was associated with prolonged P2 latencies in both CI and NH listeners in response to a 1000-Hz tone or a syllable /da/, and with prolonged N1 latencies in CI listeners in response to the syllable. Advancing age was associated with larger N1 amplitudes in NH listeners. These age-related changes in latency and ampl itude were independent of stimulus presentation rate. Further, CI listeners exhibited prolonged N1 and P2 latencies and smaller P2 amplitudes than NH listeners. Thus, aging appears to degrade some aspects of auditory temporal processing when peripheral-cochlear contributions are largely removed, suggesting that changes beyond the cochlea may contribute to age-related temporal processing deficits.
No comments:
Post a Comment