Reliable control of assistive devices using surface electromyography (sEMG) remains an unsolved task due to the signal's stochastic behavior that prevents robust pattern recognition for real-time control. Non-representative samples lead to inherent class overlaps that generate classification ripples for which the most common alternatives rely on post-processing and sample discard methods that insert additional delays and often do not offer substantial improvements. In this paper, a resilient classification pipeline based on Extreme Learning Machines (ELM) was used to classify 17 different upper-limb movements through sEMG signals from a total of 99 trials derived from three different databases. The method was compared to a baseline ELM and a sample discarding (DISC) method and proved to generate more stable and consistent classifications. The average accuracy boost of ≈ 10% in all databases lead to average weighted accuracy rates higher as 53,4% for amputees and 89,0% for n on-amputee volunteers. The results match or outperform related works even without sample discards.
No comments:
Post a Comment