Tuesday, June 11, 2019

Molecular and Cellular Neuroscience

Cross talk between SOD1 and the mitochondrial UPR in cancer and neurodegeneration

Publication date: July 2019

Source: Molecular and Cellular Neuroscience, Volume 98

Author(s): Maria Gomez, Doris Germain

Abstract

The mitochondrial unfolded protein response (UPRmt) is rapidly gaining attention. While the CHOP (ATF4/5) axis of the UPRmt was the first to be described, other axes have subsequently been reported. Validation of this complex pathway in C. elegans has been extensively studied. However, validation of the UPRmt in mouse models of disease known to implicate mitochondrial reprogramming or dysfunction, such as cancer and neurodegeneration, respectively, is only beginning to emerge. This review summarizes recent findings and highlights the major role of the superoxide dismutase SOD1 in the communication between the mitochondria and the nucleus in these settings. While SOD1 has mostly been studied in the context of familial amyotrophic lateral sclerosis (fALS), recent studies suggest that SOD1 may be a potentially important mediator of the UPRmt and converge to emphasize an increasingly vital role of SOD1 as a therapeutic target in cancer.



An FTLD-associated SQSTM1 variant impacts Nrf2 and NF-κB signalling and is associated with reduced phosphorylation of p62

Publication date: July 2019

Source: Molecular and Cellular Neuroscience, Volume 98

Author(s): A. Foster, D. Scott, R. Layfield, S.L. Rea

Abstract

Elevated oxidative stress has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). In response to oxidative stress, the Nrf2 transcription factor activates protective antioxidant genes. A critical regulator of Nrf2 is the inhibitory protein Keap1, which mediates Nrf2 degradation. In response to cellular stress an interaction between Keap1 and SQSTM1/p62 (p62), a signalling adaptor protein, allows for increased Nrf2 signalling as it escapes degradation. Mutations in SQSTM1 (encoding p62) are linked with ALS-FTLD. Previously, two ALS-FTLD-associated p62 mutant proteins within the Keap1 interacting region (KIR) of p62 were found to be associated with decreased Keap1-p62 binding and Nrf2 activation. Here we report that a non-KIR domain FTLD-associated variant of p62 (p.R110C), affecting a residue close to the N-terminal PB1 oligomerisation domain, also reduces Keap1-p62 binding in cellulo and thereby reduces Nrf2 activity in reporter assays. Further, we observed that expression of p.R110C increased NF-κB activation compared with wild type p62. Altered signalling appeared to be linked with reduced phosphorylation of p62 at Serine residues −349 and −403. Our results confirm that ALS-FTLD mutations affecting multiple domains of p62 result in a reduced stress response, suggesting that altered stress signalling may directly contribute to the pathology of some ALS-FTLD cases.



Loss of EPAC2 alters dendritic spine morphology and inhibitory synapse density

Publication date: July 2019

Source: Molecular and Cellular Neuroscience, Volume 98

Author(s): Kelly A. Jones, Michiko Sumiya, Kevin M. Woolfrey, Deepak P. Srivastava, Peter Penzes

Abstract

EPAC2 is a guanine nucleotide exchange factor that regulates GTPase activity of the small GTPase Rap and Ras and is highly enriched at synapses. Activation of EPAC2 has been shown to induce dendritic spine shrinkage and increase spine motility, effects that are necessary for synaptic plasticity. These morphological effects are dysregulated by rare mutations of Epac2 associated with autism spectrum disorders. In addition, EPAC2 destabilizes synapses through the removal of synaptic GluA2/3-containing AMPA receptors. Previous work has shown that Epac2 knockout mice (Epac2−/−) display abnormal social interactions, as well as gross disorganization of the frontal cortex and abnormal spine motility in vivo. In this study we sought to further understand the cellular consequences of knocking out Epac2 on the development of neuronal and synaptic structure and organization of cortical neurons. Using primary cortical neurons generated from Epac2+/+ or Epac2−/− mice, we confirm that EPAC2 is required for cAMP-dependent spine shrinkage. Neurons from Epac2−/− mice also displayed increased synaptic expression of GluA2/3-containing AMPA receptors, as well as of the adhesion protein N-cadherin. Intriguingly, analysis of excitatory and inhibitory synaptic proteins revealed that loss of EPAC2 resulted in altered expression of vesicular GABA transporter (VGAT) but not vesicular glutamate transporter 1 (VGluT1), indicating an altered ratio of excitatory and inhibitory synapses onto neurons. Finally, examination of cortical neurons located within the anterior cingulate cortex further revealed subtle deficits in the establishment of dendritic arborization in vivo. These data provide evidence that loss of EPAC2 enhances the stability of excitatory synapses and increases the number of inhibitory inputs.



Klotho deficiency affects the spine morphology and network synchronization of neurons

Publication date: July 2019

Source: Molecular and Cellular Neuroscience, Volume 98

Author(s): Hai T. Vo, Mary L. Phillips, Jeremy H. Herskowitz, Gwendalyn D. King

Abstract

Klotho-deficient mice rapidly develop cognitive impairment and show some evidence of the onset of neurodegeneration. However, it is impossible to investigate the long-term consequences on the brain because of the dramatic shortening of lifespan caused by systemic klotho deficiency. As klotho expression is downregulated with advancing organismal age, understanding the mechanisms of klotho action is important for developing novel strategies to support healthy brain aging. Previously, we reported that klotho-deficient mice show enhanced long-term potentiation prior to the onset of cognitive impairment. To inform this unusual phenotype, herein, we examined neuronal structure and in vitro synaptic function. Our results indicate that klotho deficiency causes the population of dendritic spines to shift towards increased head diameter and decreased length consistent with mature, mushroom type spines. Multi-electrode array recordings from klotho-deficient neurons show increased synchronous firing and activity changes reflective of increased neuronal network activity. Supplementation of the neuronal growth media with recombinant shed klotho corrected some but not all of the activity changes caused by klotho deficiency. Last, in vivo we found that klotho-deficient mice have a decreased latency to induced seizure activity. Together these data show that klotho-deficient memory impairments are underpinned by structural and functional changes that may preclude ongoing normal cognition.



Spinocerebellar ataxia type 14 caused by a nonsense mutation in the PRKCG gene

Publication date: July 2019

Source: Molecular and Cellular Neuroscience, Volume 98

Author(s): Toshihiko Shirafuji, Haruo Shimazaki, Tatsuhiro Miyagi, Takehiko Ueyama, Naoko Adachi, Shigeru Tanaka, Izumi Hide, Naoaki Saito, Norio Sakai

Abstract

Spinocerebellar ataxia type 14 (SCA14) is an autosomal dominant neurodegenerative disorder characterized by cerebellar ataxia with myoclonus, dystonia, spasticity, and rigidity. Although missense mutations and a deletion mutation have been found in the protein kinase C gamma (PRKCG) gene encoding protein kinase C γ (PKCγ) in SCA14 families, a nonsense mutation has not been reported. The patho-mechanisms underlying SCA14 remain poorly understood. However, gain-of-function mechanisms and loss-of-function mechanisms, but not dominant negative mechanisms, were reported the patho-mechanism of SCA14. We identified the c.226C>T mutation of PRKCG, which caused the p.R76X in PKCγ by whole-exome sequencing in patients presenting cerebellar atrophy with cognitive and hearing impairment. To investigate the patho-mechanism of our case, we studied aggregation formation, cell death, and PKC inhibitory effect by confocal microscopy, western blotting with cleaved caspase 3, and pSer PKC motif antibodies, respectively.

PKCγ(R76X)-GFP have aggregations the same as wild-type (WT) PKCγ-GFP. The PKCγ(R76X)-GFP inhibited PKC phosphorylation activity more than GFP alone. It also induced more apoptosis in COS7 and SH-SY5Y cells compared to WT-PKCγ-GFP and GFP.

We first reported SCA14 patients with p.R76X in PKCγ who have cerebellar atrophy with cognitive and hearing impairment. Our results suggest that a dominant negative mechanism due to truncated peptides produced by p.R76X may be at least partially responsible for the cerebellar atrophy.



Embryonic and postnatal development of mouse olfactory tubercle

Publication date: Available online 11 June 2019

Source: Molecular and Cellular Neuroscience

Author(s): Eduardo Martin-Lopez, Christine Xu, Teresa Liberia, Sarah J. Meller, Charles A. Greer

Abstract

The olfactory tubercle (OT) is located in the ventral-medial region of the brain where it receives primary input from olfactory bulb (OB) projection neurons and processes olfactory behaviors related to motivation, hedonics of smell and sexual encounters. The OT is part of the dopamine reward system that shares characteristics with the striatum. Together with the nucleus accumbens, the OT has been referred to as the "ventral striatum". However, despite its functional importance little is known about the embryonic development of the OT and the phenotypic properties of the OT cells. Here, using thymidine analogs, we establish that mouse OT neurogenesis occurs predominantly between E11-E15 in a lateral-to-medial gradient. Then, using a piggyBac multicolor technique we characterized the migratory route of OT neuroblasts from their embryonic point of origin. Following neurogenesis in the ventral lateral ganglionic eminence (vLGE), neuroblasts destined for the OT followed a dorsal-ventral pathway we named "ventral migratory course" (VMC). Upon reaching the nascent OT, neurons established a prototypical laminar distribution that was determined, in part, by the progenitor cell of origin. A phenotypic analysis of OT neuroblasts using a single-color piggyBac technique, showed that OT shared the molecular specification of striatal neurons. In addition to primary afferent input from the OB, the OT also receives a robust dopaminergic input from ventral tegmentum (Ikemoto, 2007). We used tyrosine hydroxylase (TH) expression as a proxy for dopaminergic innervation and showed that TH onset occurs at E13 and progressively increased until postnatal stages following an 'inside-out' pattern. Postnatally, we established the myelination in the OT occurring between P7 and P14, as shown with CNPase staining, and we characterized the cellular phenotypes populating the OT by immunohistochemistry. Collectively, this work provides the first detailed analysis of the developmental and maturation processes occurring in mouse OT, and demonstrates the striatal nature of the OT as part of the ventral striatum (vST).



Disease signatures: Biomarkers/indicators of neurodegeneration

Publication date: Available online 25 May 2019

Source: Molecular and Cellular Neuroscience

Author(s): Henrik Zetterberg, Mathias Bähr



Hippocampal sub-regional differences in the microRNA response to forebrain ischemia

Publication date: Available online 23 May 2019

Source: Molecular and Cellular Neuroscience

Author(s): Oiva Arvola, Georgia Kaidonis, Lijun Xu, Brian Griffiths, Creed M. Stary

Abstract

Transient forebrain ischemia, as occurs with cardiac arrest and resuscitation, results in impaired cognitive function secondary to delayed neuronal cell death in hippocampal cornu ammonis-1 (CA1). Comparatively, hippocampal neurons in the adjacent dentate gyrus (DG) survive, suggesting that elucidating the molecular mechanisms underpinning hippocampal sub-regional differences in ischemic tolerance could be central in the development of novel interventions to improve outcome in survivors of forebrain ischemia. MicroRNAs (miRNAs) are non-coding RNAs that modulate the translation of target genes and have been established as an effective therapeutic target for other models of injury. The objective of the present study was to assess and compare post-injury miRNA profiles between CA1 and DG using a rat model of forebrain ischemia. CA1 and DG sub-regions were dissected from rat hippocampi following 10 min of forebrain ischemia at three time points (3 h, 24 h, and 72 h) and at baseline. Pronounced differences between CA1 and DG were observed for several select miRNAs, including miR-181a-5p, a known regulator of cerebral ischemic injury. We complexed fluorescent in situ hybridization with immunohistochemistry to observe cell-type specific and temporal differences in mir-181a-5p expression between CA1 and DG in response to injury. Using established miRNA-mRNA prediction algorithms, we extended our observations in CA1 miRNA dysregulation to identify key functional pathways as potential modulators of CA1 ischemic vulnerability. In summary, our observations support a central role for miRNAs in selective CA1 ischemic vulnerability and suggest that cell-specific miRNA targeting could be a viable clinical approach to preserve CA1 neurons and improve cognitive outcomes for survivors of transient forebrain ischemia.



Exposing immature hippocampal neurons to excitotoxins reveals distinct transcriptome and protein regulation with induction of common survival signaling pathways

Publication date: Available online 11 May 2019

Source: Molecular and Cellular Neuroscience

Author(s): L.K. Friedman, N. Osei-tutu, B. Zhang

Abstract

Early life traumas lead to neuroprotection by preconditioning mechanisms. To determine which genes and pathways are most likely involved in specific adaptive effects, immature hippocampal cultures were exposed to a single high dose of glutamate (250 μM), NMDA (100 μM), or KA (300 μM) for 48 h (5–7 DIV) based on our prior "two hit" in vitro model of preconditioning. Transcriptome profiling and immunocytochemistry of gene candidates were performed 7 days later when cultured neurons mature (14 DIV). Many genes were up- and down- regulated involving distinct Ca2+-binding protein families, G-coupled proteins, various growth factors, synaptic vesicle docking factors, certain neurotransmitter receptors, heat shock, oxidative stress, and certain anti-apoptotic Bcl-2 gene members that influence neuronal survival. Immunohistochemistry showed a marked decrease in the number of Calb1 and Calm2 positive neurons following NMDA but not after glutamate exposure whereas ryanodine and Cav1.2 voltage gated channel expression was less affected. Survivors had marked increases in Calm2 immunostaining; however, high-density neural clusters observed in controls, were depleted after NMDA and partly diminished after glutamate. While NR1 mRNA expression was decreased in the microarray, specific antibodies revealed selective loss of the NR1 C1 splice variant. Calm2 which can inactivate NMDA receptors by binding to C1 but not C2 regions of its NR1 subunit suggests that loss of the C1 splice variant will reduce co-regulation with Calm2 and alter NR1 trafficking, phosphorylation, and NMDA currents following early life NMDA exposure. A dramatic reduction in the density of GABAAα5 and GABAB receptor expressing neurons was observed after NMDA exposure but immunodensity measurements were unchanged as was the expression of the GABA synthesizing enzyme, GAD, suggesting that fast inhibitory neurotransmission and response to benzodiazepines and GABAB-mediated IPSPs may be preserved in matured survivors. Selective upregulation of Chat and CNRIP was detected after glutamate treatment suggesting this condition would decrease cholinergic and excitatory neurotransmission by decreasing Ach content and CB1 interacting protein function. This decrease likely contributes to memory and attention tasks deficits that follow a single early neurological insult. Diverse changes that follow overactivation of excitatory networks of immature neurons appear long-lasting or permanent and are expected to have profound effects on network function and adaptive responses to further insult.



Neurotoxic effects of MPTP on mouse cerebral cortex: Modulation of neuroinflammation as a neuroprotective strategy

Publication date: April 2019

Source: Molecular and Cellular Neuroscience, Volume 96

Author(s): Mariana Oliveira Mendes, Alexandra Isabel Rosa, Andreia Neves Carvalho, Maria João Nunes, Pedro Dionísio, Elsa Rodrigues, Daniela Costa, Sara Duarte-Silva, Patrícia Maciel, Cecília Maria Pereira Rodrigues, Maria João Gama, Margarida Castro-Caldas

Abstract

Parkinson's disease (PD) is a progressive neurological disorder, mainly characterized by the progressive loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc) and by the presence of intracellular inclusions, known as Lewy bodies. Despite SNpc being considered the primary affected region in PD, the neuropathological features are confined solely to the nigro-striatal axis. With disease progression other brain regions are also affected, namely the cerebral cortex, although the spreading of the neurologic damage to this region is still not completely unraveled.

Tauroursodeoxycholic acid (TUDCA) is an endogenous bile acid that has been shown to have antioxidant properties and to exhibit a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of PD. Moreover, TUDCA anti-inflammatory properties have been reported in glial cells, making it a prominent therapeutic agent in PD.

Here, we used C57BL/6 mice injected with MPTP in a sub-acute paradigm aiming to investigate if the neurotoxic effects of MPTP could be extended to the cerebral cortex. In parallel, we evaluated the anti-oxidant, neuroprotective and anti-inflammatory effects of TUDCA. The anti-inflammatory mechanisms elicited by TUDCA were further dissected in microglia cells.

Our results show that MPTP leads to a decrease of ATP and activated AMP-activated protein kinase levels in mice cortex, and to a transient increase in the expression of antioxidant downstream targets of nuclear factor erythroid 2 related factor 2 (Nrf-2), and parkin. Notably, MPTP increases pro-inflammatory markers, while down-regulating the expression of the anti-inflammatory protein Annexin-A1 (ANXA1). Importantly, we show that TUDCA treatment prevents the deleterious effects of MPTP, sustains increased levels of antioxidant enzymes and parkin, and most of all negatively modulates neuroinflammation and up-regulates ANXA1 expression. Additionally, results from cellular models using microglia corroborate TUDCA modulation of ANXA1 synthesis, linking inhibition of neuroinflammation and neuroprotection by TUDCA.



Alexandros Sfakianakis
Anapafseos 5 . Agios Nikolaos
Crete.Greece.72100
2841026182
6948891480

No comments:

Post a Comment

Collaboration request

Hi there How would you like to earn a 35% commission for each sale for life by selling SEO services Every website owner requires the ...